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We report the first measurements of inclusive W and Z cross sections times leptonic branching
ratios for pp collisions at

√
s = 1.96 TeV, based on their decays to electrons and muons. The data

correspond to an integrated luminosity of 72 pb−1 recorded with the CDF detector at the Fermilab
Tevatron. We test e-µ universality in W decays, and we measure the ratio of leptonic W and Z
rates from which the leptonic branching fraction B(W → ℓν) can be extracted as well as an indirect
value for the total width of the W and the CKM matrix element, |Vcs|.

PACS numbers: 13.38.Be,14.70.Fm,13.85.Qk,12.38.Qk,12.15.Ji

We report the first measurements of the inclu-
sive production of W and Z bosons in pp colli-
sions at the upgraded Run II Fermilab Tevatron op-
erated at sqrts = 1.96 TeV. Measurements dur-
ing Run I at

√
s = 1.8 TeV have been reported

by the CDF and DØ collaborations [1]. The data
were collected with the CDF detector and comprise
72.0 ± 4.3 pb−1. W and Z bosons are identified by
their decays to electrons and muons, from which we
obtain the total rates σ(pp → W )×B(W → ℓν) and
σ(pp → Z) × B(Z → ℓ+ℓ−) [3]. We test e-µ uni-
versality in W decays using the ratio of inclusive W
production for the two lepton species. We derive the
leptonic branching ratio B(W → ℓν) and an indirect
value for the total W width, Γtot

W , from the ratio of
leptonic rates,

R ≡ σ(pp → W ) × B(W → ℓν)

σ(pp → Z) × B(Z → ℓ+ℓ−)
. (1)

Measurements of Γtot
W test the Standard Model (SM),

which predicts Γtot
W in terms of electroweak parame-

ters and the CKM matrix elements [2].
The CDF detector has been substantially up-

graded since the end of the previous data-taking pe-
riod [4]. The central outer tracker (COT) is a pre-
cision drift chamber which provides up to 96 space-
points for a track falling within its fiducial range
|η| < 1 [5]. The COT sense wires are arranged in
eight ‘super-layers,’ four of which provide axial co-
ordinates and four of which provide stereo measure-
ments. Precise track coordinates closer to the beam
are provided by the silicon vertex detector. The fidu-
cial coverage of the central electromagnetic (em) and
hadronic (had) calorimeters has been extended to
|η| ∼ 2.8, and the muon chambers provide coverage
out to |η| ∼ 1.

The selection of candidate W and Z decays begins
with the requirement of a high-pT lepton. Electrons

are identified on the basis of their electromagnetic
showers. We require an energy cluster in a well-
instrumented region of the calorimeter with ET >
25 GeV, matched to a single track with pT > 10 GeV
that extrapolates to the position of the cluster at
a depth corresponding to shower maximum. The
ratio ET /pT must be less than 2, and the energy in
the hadronic calorimeter must be relatively small:
Ehad/Eem < 0.055 + 0.00045 × Eem. The shape of
the shower must be consistent with that observed
from test-beam data. Beyond the central tracker
coverage, |η| > 1, only calorimetry is used to identify
electrons.

Muons are identified on the basis of a track seg-
ment (‘stub’) reconstructed in the muon chambers
with positions well-matched to the extrapolation of
a single track. We require pT > 20 GeV, and energy
depositions in the calorimeters consistent with those
expected from a minimum-ionizing particle.

Requirements on the reconstructed track are com-
mon to both the electron and muon selections. At
least three axial and three stereo COT super-layers
must have seven hits or more. Not all the lepton
tracks have hits from the silicon vertex detector, so
for the sake of uniformity in the pT measurement,
we drop these hits and constrain the track fit to the
transverse beam profile. For muons, we apply a cut
on the χ2 for the track fit to eliminate kaons and pi-
ons which have decayed in flight. The coordinate of
the lepton along the beam line must fall within 60 cm
of the center of the detector to ensure a good energy
measurement in the calorimeter. This requirement
eliminates ∼ 5% of the data, according to studies
with minimum-bias events.

After the selection of high-pT leptons, we estab-
lish the W and Z samples. For W → ℓν candidates,
we require 6ET > 25 GeV (20 GeV) in the elec-
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tron (muon) channel as evidence for the neutrino.
In the muon channel, events with a second energetic
charged particle are rejected as potential background
from Z → µ+µ−. For Z candidates, a second elec-
tron is required in the electron channel, and a second
charged particle in the muon channel. The identifi-
cation requirements are looser for the second lepton
in order to maintain good efficiency for these events.
For example, the requirements on ET /pT , the match
of the track to the center of the cluster, and on the
lateral shower shape are dropped for the Z → e+e−

analysis.
For W → eν candidates we accept electrons re-

constructed in the central calorimeter, which cor-
responds to |η| <∼ 1. For Z → e+e− candidates,
one electron must come from the central calorimeter,
while the second can come from the forward region.

A significant background comes from leptons from
the decays of heavy-flavor hadrons, which can be
reduced by requiring that the lepton be isolated. We
require that the calorimetric energy not associated
with the lepton in a cone of ∆R = 0.4 around the
lepton must be no more than 10% of the energy of
the lepton [6].

Cosmic-ray muons contaminate the muon sam-
ples. We use the timing capabilities of the COT
to reject events with two muon tracks, one of which
travels from outside of the COT toward the beam
pipe. We also require that the muon tracks pass
close to the beam line, within distances less than
0.02 cm (0.2 cm) for tracks with (without) silicon
hits.

The kinematic and geometric acceptance is esti-
mated using the Pythia 6.203 event generator [7]
and a full simulation of the CDF detector based on
the Geant simulation package [8]. The key quan-
tity is the boson rapidity, y, so we extract the ac-
ceptance A(y) from the simulation and convolve it
with a NNLO calculation of dσ/dy [9], which de-
pends on the parton distribution functions (PDF’s).
We compute the central values of the acceptance us-
ing the MRST PDF’s [10], and the uncertainties
using the eigenvector basis sets for CTEQ6M [11],
which range from 0.7%–2.1% depending on the chan-
nel. These are roughly a factor two larger than those
obtained using the MRST error PDF’s.

The amount of material an electron passes
through is known to 10%–30%, depending on η: this
contributes <∼ 1% to the acceptance uncertainty for
the electron channels. The energies of hadronic jets
recoiling against the W bosons enter the calculation

of 6ET . We test the accuracy of the simulation us-
ing a χ2 test with scale factors and offsets for the
components of these energies which are parallel and
perpendicular to the lepton momentum vector. Tak-
ing a variation corresponding to ∆χ2 = 9, we infer
systematic uncertainties of about 0.3%. The energy
and momentum scales for the leptons are treated in a
similar manner, resulting in an uncertainty of 0.2%–
0.3%. Finally, we vary the parameters of the Pythia

model which influence the boson pT distribution, as
allowed by χ2 tests with the Run I measurement [1],
and find the uncertainty on the acceptance is negli-
gible.

Lepton reconstruction, identification, isolation
and trigger efficiencies are measured directly with
the data. We use Z → ℓ+ℓ− decays in which the
standard cuts are applied to one lepton and the
second candidate lepton is tested to see whether it
passes the given criteria. The statistical uncertain-
ties are below 1% and studies with the simulation
show negligible bias with respect to W decays. The
cuts to eliminate cosmic rays remove a very small
fraction of signal events in the muon channel, as
measured by applying the cuts to W → eν and
Z → e+e− events. The track-reconstruction effi-
ciency is measured using a trigger demanding an
energetic calorimeter cluster which provides a sam-
ple of W → eν events independent of the tracking.
The efficiency for rejecting Z → µ+µ− events in the
W → µν channels is estimated using the simulation.

Backgrounds fall into three categories: multi-jet
events with no W or Z bosons, weak-boson back-
grounds (Z → ℓ+ℓ− and W → τν appearing in
W → ℓν, and Z → τ+τ− and W → ℓν appearing in
Z → ℓ+ℓ−) and non-collision background, primar-
ily cosmic rays. Estimates of these backgrounds are
summarized in Table I.

The multi-jet background is estimated with the
data. Such events are characterized by a significant
energy in the cone around the lepton and a small 6ET ,
with tails in both quantities. We assume that these
tails are not correlated, and estimate the number of
background events by comparing to control regions
with either low 6ET or high energy in the isolation
cone, after taking into account the W events which
fall in the control regions. We vary the cuts on 6ET

and isolation which define the control regions, and
then estimate changes in a manner reproduced by
the simulation. We assign a systematic uncertainty
of 50% for this background estimate.

The weak-boson backgrounds are obtained using
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TABLE I: Background estimates.

channel

category W → eν W → µν Z → e+e− Z → µ+µ−

multi-jet 587 ± 299 220 ± 111 41 ± 18 0+1

−0

Z → ℓ+ℓ− 317 ± 14 1739 ± 75 - -

Z → τ+τ− negl. negl. 3.7 ± 0.4 1.5 ± 0.3

W → τν 752 ± 17 998 ± 31 negl. negl.

W → ℓν - - 16.8 ± 2.8 negl.

cosmic rays negl. 33 ± 23 negl. 12 ± 12

the simulation to compute the acceptance relative
to that of the signal. To normalize the contribution
of Z → ℓ+ℓ− backgrounds to W → ℓν channels,
we use the theoretical value for the ratio of cross
sections, with an uncertainty corresponding to pre-
vious measurements of W and Z cross sections [1].
Backgrounds from di-boson and tt̄ production are
negligible.

For estimating the cosmic-ray contamination in
the W → µν sample, we use the azimuthal distri-
bution of muon chamber hits opposite the high-pT

muon. For the Z → µ+µ− sample, we use the dis-
tribution of the cosine of the angle between the two
muon tracks. In both cases, the contribution from
cosmic rays is very small.

The uncertainty on the luminosity measurement is
6.0%, of which 4.4% comes from the acceptance and
operation of the luminosity monitor and 4.0% comes
from the calculation of the total pp cross section [12].

We compute the transverse mass of each candidate
W decay: MT ≡

√

ET 6ET − (Ex 6ET,x + Ey 6ET,y),
where Ex and Ey are measured with the calorime-
ter for electrons, and with the COT for muons. In
the Z → ℓ+ℓ− channels, we compute the invariant
mass of the lepton pair, and count the candidates
in the mass window 66 GeV < Mℓ+ℓ− < 116 GeV.
The cross sections σ(pp → Z/γ∗ → ℓ+ℓ−) reported
here include the contributions from virtual photon
exchange. Distributions for W → µν and Z → e+e−

are shown in Fig. 1, which demonstrate that the sim-
ulations match the data well.

The measurement of the cross section requires the
number of events selected for the given luminosity,
and the estimates of the acceptance, efficiencies, and
backgrounds. A summary of these quantities and the
inferred cross sections is given in Table II.

We test e-µ universality in W decays by taking
ratios of the W cross sections. Many uncertainties
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FIG. 1: Distributions of MT for W → µν (top) and
Me+e− for Zγ∗ → e+e− (bottom). The arrows in the
Me+e− distribution define the mass window.

cancel in this ratio, and we find for the ratio of W -ℓ-
ν couplings: gµ/ge = 0.998±0.004(stat)±0.011(syst).

Since there is no sign of non-universality, we com-
bine our measurements taking correlated uncertain-
ties into account, and obtain

σ × B (pp → W → ℓν) =
2775 ± 10(stat) ± 53(syst) ± 167(lum) pb

σ × B (pp → Z/γ∗ → ℓ+ℓ−) =
254.9 ± 3.3(stat) ± 4.6(syst) ± 15.2(lum) pb.

Agreement with SM predictions [13, 15] is good.
We compute the ratio, R (Eq. 1), taking all cor-

relations among channels into account, and obtain
R = 10.92 ± 0.15(stat) ± 0.14(syst), after correcting
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for virtual photon exchange (we divide the measured
Z/γ∗ cross section by a factor 1.001 ± 0.004.) Us-
ing the measured value B(Z → ℓ+ℓ−) = 0.033658±
0.000023 [14] and a theoretical calculation of the ra-
tio of production cross sections [15], we extract the
leptonic branching ratio B(W → ℓν) = 0.1089 ±
0.0022.

Using the theoretical value for the leptonic par-
tial width, Γ(W → ℓν) = 226.4 ± 0.3 MeV [14],
we extract the total width of the W boson: Γtot

W =
2079 ± 41 MeV which can be compared to the SM
value, 2092.1± 2.5 MeV and the current world aver-
age, 2118± 42 MeV [14]. Alternatively, rather than
using the measured value for B(Z → ℓ+ℓ−), we can
use the SM value for Γ(Z → ℓ+ℓ−) and extract the
ratio of total widths: Γtot

W /Γtot
Z = 0.833 ± 0.017.

Finally, in the SM, the total width Γtot
W depends

on electroweak parameters and certain CKM ma-
trix elements, which we can constrain using Γtot

W [2].
Using world average values [14] for all CKM matrix
elements except |Vcs|, we derive |Vcs| = 0.967±0.030.
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TABLE II: Number of selected events, and estimated acceptance, efficiency, and expected number of background
events. Cross sections are reported in pb, with a statistical and systematic uncertainty. A common uncertainty due
to the luminosity measurement is 166 pb (15 pb) for the W (Z) channels.

channel

category W → eν W → µν Z → e+e− Z → µ+µ−

N candidates 37584 31722 4242 1785

acceptance 0.2397 ± 0.0039 0.1970 ± 0.0027 0.3182 ± 0.0041 0.1392 ± 0.0030

efficiency 0.749 ± 0.009 0.732 ± 0.013 0.713 ± 0.012 0.713 ± 0.015

background 1656 ± 300 2990 ± 140 62 ± 18 13 ± 13

cross section (pb) 2780 ± 14 ± 60 2768 ± 16 ± 64 255.8 ± 3.9 ± 5.5 248.0 ± 5.9 ± 7.6


